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SYNOPSIS 

The correctness and reliability of different methods of creep function calculations from 
relaxation curves were investigated by the computational experiment method. It was shown 
that an adequate description of some initial (relaxation) curve was not sufficient for the 
correct determination of the proper creep function. The best results can be achieved by 
the method of expansion of a relaxation curve into the discrete sum of exponents; some 
other procedures of analytical approximation of relaxation curves can lead to considerable 
unexpected errors in calculated creep functions. 

The experiments were done with polycarbonate (PC) in the linear stress range and also 
at high stresses. The limits of linear viscoelastic behavior were determined. 

INTRODUCTION 

The application of polycarbonate (PC ) as an engi- 
neering plastic requires the determination of a wide 
set of mechanical properties for this material. In 
particular, it is necessary to estimate its long-term 
behavior in creep and relaxation, as these kinds of 
deformation imitate those found for the most typical 
applications of different articles made from PC. 

Direct creep measurements are not difficult in 
principle and can be made with homemade or serial 
devices. But in practice there are two points which 
must be considered. First, the problem of maintain- 
ing strictly constant stress should be solved. Second, 
such experiments are very prolonged and this leads 
to some methodological difficulties which influence 
the accuracy of measurements (for example: changes 
in temperature, humidity, and structure of a sample 
during the experiment; creep and relaxation of the 
sensor itself; and so on).  For these reasons it would 
be attractive to use some theoretical (calculation) 
approaches to decrease the number of experiments 
needed to receive a reliable creep curve. 

The potential for realizing this goal is contained 
in the linear theory of viscoelasticity which gives 
analytical expressions allowing calculation of the 
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creep function from a relaxation curve.’ However, 
there are four questions which need to be answered 

1. Is the calculation of the creep function from 
a relaxation curve stable with respect to pos- 
sible experimental errors? 

2. What is the best way of approximation of the 
experimental relaxation curve in order to 
reach the best reliability of the final result? 

3. What is the possible reliable time range in 
creep relating to the observed time scale of 
relaxation? 

4. Where do the limits of linear behavior lie and 
what is the role of this factor? 

This paper attempts to find general answers to 
the above questions and to illustrate them by com- 
putational simulation of the problem under discus- 
sion. 

THEORY 

This part of the paper will be devoted to the math- 
ematical ( computational) simulation of problems 1- 
4, formulated in the introduction. To do this one 
should choose definite analytical forms of visco- 
elastic functions and treat them as the “experimen- 
tal” basis for further discussion. 
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$( t )  = JO K ( T )  d7 - t / q  (5)  
As is well known, the relationship between relax- 

ation modulus G(  t )  and creep compliance J( t )  is 
expressed by an integral equation of the convolution 
type: ‘ v 2  The corresponding relaxation kernel has the form 

R ( t )  = Ae-@ta-’ (0 < (Y < 1) ( 6 )  
l G ( r ) J ( t  - T )  d7 = t (1) 

and the relaxation function can be written as 

and 

where 4 ( t )  is the relaxation function, $ ( t )  is the 
creep function, G, is the equilibrium elastic mod- 
ulus, Jo is the instantaneous compliance, and q is 
the viscosity. 

To obtain the solution of Equation ( 1 ) one must 
invert a Laplace transform that is not always pos- 
sible in the analytical form. That is the reason why 
concrete solutions of Equation ( 1 ) based on different 
analytical presentations of the relaxation and/or 
creep functions have been proposed and used by 
many authors. 

One of the known exact solutions of Equation 
(1) will be taken as a reference curve. The mathe- 
matical ( computational ) experiment consists in 
comparing curves obtained by different approxi- 
mation methods with the reference curve. 

As the control (or reference) creep function a 
curve will be used that is determined by the following 
kernel: 

The creep function is expressed by K (  t )  as 

G, ( 7 )  

where Go is the instantaneous elastic modulus. It is 
important that the values of all these functions be 
calculated and tabulated for a wide range of param- 
e t e r ~ , ~  so that knowing one of these (creep or relax- 
ation) functions it is possible to find the other one 
with any desired accuracy. Let us consider this cal- 
culated relaxation curve as initial “experimental” 
datum. Then one can approximate it by different 
methods (the accuracy of measurements namely the 
maximum deviation in every point of the time scale 
being accepted to be equal to 10%) and calculate 
the creep function. The comparison of these newly 
calculated creep functions with the exact solution 
presented by Equations ( 4 )  and (5) will allow one 
to answer some questions concerning the correctness 
of the whole procedure, and in particular, the sta- 
bility of the solution with respect to experimental 
errors when using different methods of approxi- 
mation. This is the goal of the computational ex- 
periment. 

In the text below the designation “experimental” 
will be omitted and the tabulated values of +( t )  and 
$( t )  which have been calculated will be used as the 
real experimental (or reference) pair of functions. 
In this case the dimension of time has no meaning 
as it can have any value. 

Let us examine the possibility of approximating 
some experimental curve by the sum of exponential 

Table I Approximation of the Relaxation Curve by the Sum of Exponents 

Relaxation Spectrum Retardation Spectrum 

Spectrum No. Time, T~ Modulus, Ci Time, O1 Compliance, J1 

17 0.32 
5.3 0.35 
0.58 0.17 
0.05 0.06 

16 0.43 
3.0 0.30 
0.30 0.13 

120 
8.1 
0.71 
0.05 

4.4 
0.35 

120 

14 
0.44 
0.24 
0.07 

0.5 
0.18 

14 
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functions. Certainly this is always possible, but the 
exact number of functions is always unknown. The 
minimum necessary number of exponents is deter- 
mined by the quality of an experiment: their sum 
must give a curve deviating from the experimental 
data by no more than the error of measurement. 
Four exponents were taken for the selected probe 
relaxation curve (Table I, spectrum No. 1) and a 
quite satisfactory approach to the corresponding 
creep function was reached (Fig. 1 ) . 

Consequently the solution of the problem under 
discussion exists and can be found by the used 
method. But the sensitivity of this approach is also 
of great importance. A particularly interesting aspect 
of the problem is the role of a very short initial time 
period, because instrumentation effects are the most 
pronounced at the start of the relaxation, and the 
curve is least reliable when time values are small. 

Let us examine the case omitting the initial part 
of the relaxation curve and using not four senior 
members of the exponential sum but three, two, or 
even one. In this situation the accuracy of the re- 
laxation curve approximation decreases slightly, but 
(as one can see from Table 11) the quality of any 
predictions of the creep curve deteriorates sharply 

4 I 

-f 1 
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Figure 1 Results of calculation of the creep function, 
the relaxation curve being presented by the sum of ex- 
ponents: one (4); two (3); three (2); or four (1) members. 

Table I1 Influence of Decreasing the Number of 
Exponents in the Expansion on Predictions of the 
Creep Curve 

Relaxation Creep 
Number of 
Exponents Time Range A, %" A, % Amax, %b 

4 10-~-10~ 1.2 3.3 5.8 
3 10-1-102 1.2 5.6 8.4 
2 100-102 1.5 11 16 
1 101-1 02 0.7 13 27 

a A - average error. 
b m a r -  A maximum error. 

(Fig. 1 ) . This is definitely connected with the con- 
traction of the time scale for the relaxation data 
used for calculations. This result shows that the so- 
lution of the inverse problem depends on the quality 
of an initial experimental curve and of its approxi- 
mation. 

Inside the same boundaries of error for the same 
initial experimental data one can obtain different 
spectra using different methods of approximation. 
How can these influence the results of calculations? 
The answer to this question is based on an analysis 
of the spectrum No. 2 in Table I, which also describes 
the relaxation curve with a maximum deviation of 
less than 10%. The spectra Numbers 1 and 2 as well 
as the corresponding retardation spectra are rather 
different. Nevertheless in both cases the experi- 
mental ( reference) and calculated creep functions 
are very close to each other (mean square deviation 
is equal to 4% ) . This means that the solution of the 
integral Equation (1) is fairly stable in respect to 
slight variations of the initial experimental data. 

In accordance with the results of the computa- 
tional 

1. 

2. 

3. 

4. 

experiment it is possible to say that 

The integral problem of calculation of the 
creep function, on the basis of an experimen- 
tal relaxation curve can have an adequate so- 
lution. 
This solution can be obtained by expansion 
of the relaxation curve into the discrete sum 
of exponents. 
The solution found by this method appears 
to be fairly stable in respect to some slight 
variations of initial experimental data. 
The error in the creep prediction grows and 
becomes unacceptable if one gives up the ini- 
tial part of the relaxation curve and uses a 
reduced number of exponential members. 
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Now let us try to answer the following question. 
If we approximate the relaxation curve by any func- 
tion within the experimental corridor (which is set 
by the usual error of l o % ) ,  can we arrive at the 
correct creep function? There is another version of 
the same question: are the results of calculations 
insensitive to the choice of an approximation 
method? 

Bearing in mind that a change in the number of 
exponents influenced the decomposition of the re- 
laxation curve to only a small extent, one could ex- 
pect to answer "yes", but in reality the answer is 
negative. To prove this, the relaxation kernel cor- 
responding to the Kolhrausch function will be taken 
in lieu of exponents 

Rk( t )  = AkLYkYe-ytur/tl-ak ( O < a k <  1) (8) 

It is possible to show that there are at least three 
sets of this function's parameters which present 
curves lying within the borders of the experimental 
corridor for a relaxation curve (Table 111). 

Again, what about the creep function? One can 
see from Table I11 that the results are strongly de- 
pendent on the choice of approximation parameters. 
None of the three sets of parameters gives the creep 
function with desirable accuracy with respect to the 
maximum error. The results of calculations are also 
shown in Figure 2, and one can see that the solution 
is unstable with respect to permissible experimental 
errors, and that slight variations in the initial con- 
ditions of this approximation method lead to a great 
divergence in final solutions. 

Therefore the analytical approximation of the 
relaxation curve within experimental accuracy is a 
necessary but not a sufficient condition for the cor- 
rect soIution of the probIem of calculating the creep 
function from the measured relaxation curve. 

Table I11 
Relaxation Functions" 

Interrelation Between the Creep and 

Relaxation Creep 

Number of A, Amar , A, Amex, 
Curve Y Lyk %b %' % 96 

1 0.364 0.552 2.0 5.2 45 75 
2 0.33 0.76 1.8 2.8 8 15 
3 0.222 0.822 5.7 9.2 11 26 

a Approximated by Kolhrausch equation (Ak = const). 

' AmX - maximum error. 
A - average error. 

:/Jo I 

-1 

9t  
Figure 2 The results of calculation of the creep func- 
tion, the relaxation curve being represented by Kolhrausch 
function. Numbers of the curve correspond to the ones in 
Table 111. 

EXPERIMENTAL 

The experiments were made with an industrial grade 
of amorphous thermoplastic, PC Macrolon (Bayer ) . 

Relaxation and creep functions were measured 
with the PC samples at  the same temperatures. The 
levels on preset normal stress (in creep) uo and 
strains (in relaxation) to were varied within the lim- 

A - reference point 

L 

40 60 f0 T,"L 2D 

Figure 3 Method of determination of temperature de- 
pendence of the equilibrium elastic modulus (2 ) by parallel 
shift of the experimental instantaneous modulus-vs.-tem- 
perature curve ( 1 ) . 
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Figure 4 
36; (4 )  2.5,40; and ( 5 )  3%, 42 MPa. 

Normalized creep curves of PC at 50T:  ( 1 )  co = 1, uo = 20; ( 2 )  1.5,30; ( 3 )  2, 

its shown in the experimental graphs discussed be- 
low. The temperature range was T = 20-85°C. 

The relaxation curves were determined by a Uni- 
versal Testing machine Instron-1122 with an op- 
tional device which provided the capability of mea- 
suring stress versus time dependencies, strain being 
held strictly constant. The duration of relaxation 
was no more than 20 min. 

The creep curves were measured by a homemade 
device with a tensometric transducer of deformation. 
All the experiments were made simultaneously for 
10 samples. The error in stress during the relaxation 
and the relative divergence in extreme cases did not 
exceed 10%. 

In addition to these direct measurements, creep 
functions were calculated from relaxation curves 

20°C 

o 50°C 

A 7OoC 
o ss'c 

- 
30 50 70 6: MP.3 

Figure 5 
represents approximation curve calculated according to Equation (9 ) .  

Dependence of critical time t* on stress at different temperatures. Solid line 
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0 3  

2 

so0 1000 t, S 

Figure 6 Experimental relaxation curves of PC at 50°C: 
(1) to = 1; (2) 1.5; ( 3 )  2; ( 4 )  2.5; and(5)  3%. Dottedline 
represents the stress-strain curve (crosshead velocity 
being equal to 25 mm/s) . 

according to the procedure discussed above. This 
was done to compare the creep functions obtained 
by model calculations with some real experimental 
data, and to estimate the possible limits of the cal- 
culated creep function when extrapolated beyond 
the initial experimental range of relaxation. 

DISCUSSION 

The theoretically irreproachable method of expan- 
sion of relaxation curves into the sum of exponents 
immediately meets with difficulties on being applied 
to some real experimental data. The first and the 
most obvious of them is connected with the problem 
of determining equilibrium elastic modulus G, at 
different temperatures which is impossible by direct 
measurements. Moreover it is quite unclear how to 
extrapolate relaxation curves to t + 00 in order to 
find G,. 

The instantaneous moduli Go and G, can both 
be presented as different moments of the relaxation 

spectrum of a substance4 and this means that an 
assumption about the analogous character of the 
temperature dependencies of these moduli can be 
made. It is then necessary to know only one reference 
value of G,,  as the temperature dependence of Go 
is rather easily measured. The reference point was 
taken where the best coincidence of the experimental 
and calculated creep curves occurs at to = 1%, T 
= 20°C. The procedure is illustrated by Figure 3. 

For the estimation of the limits of linear visco- 
elasticity behavior the creep curves were normalized 
by the instantaneous compliance Jo. In this case 
the linear viscoelasticity range was taken, as usual, 
to be the deformation and stress fields in which the 
normalized creep curve did not depend on the preset 
stress; the assumption of PC creep linearity at to 

= 1% was made.5 One can estimate the coincidence 
of curves measured at different stress levels only by 
taking into account the limits of experimental ac- 
curacy. 

The experimental creep curves are shown in Fig- 
ure 4. One can see that the initial parts of all the 
curves coincide, but that some deviations from the 
common field of points always appear when the ex- 
perimental time scale becomes long enough. Hence, 
not only does the limit of linearity depend on stress 
but a t  a given initial stress nonlinearity appears after 
a certain time. This limiting (or critical) time t* is 
the function of stress. This time t* was considered 
as the point at which experimental curve deviation 
from linearity became greater than experimental 
accuracy ( 10% ) . 

The dependence of critical time t* on stress is 
shown in Figure 5. It can be described by the fol- 
lowing empirical equation: 

t* = rn exp(-aa) (9) 

where the stress-sensitivity factor a = 0.101 MPa 

Table IV Parameters of Discrete Relaxation 
Spectra, 50°C 

Curve in 
Fig. 6 T,, s GIa r2, s Gz 73, s G3 

1 3500 0.34 11 0.04 - - 
2 4000 0.28 58 0.06 2.8 0.02 
3 3500 0.32 10.8 0.06 - - 
4 2700 0.29 11.2 0.095 - - 
5 2600 0.28 11 0.097 - - 

a Gi are dimensionless, as the experimental relaxation curves 
were normalized. 
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Figure 7 Creep curves of PC obtained by the expansion of a relaxation curve into the 
sum of exponents at 20' ( a ) ,  50" (b ) ,  70" ( c )  and 85OC (d) :  co = 1 ( l ) ,  1.5 ( 2 ) ,  2 ( 3 ) ,  2.5 
(4)  and 3% ( 5 ) .  Experimental creep curves are shown with points and calculated curves 
with solid lines. 
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and m = 5.01 X lo5 s. As one can see, the temper- 
ature does not influence the character of this de- 
pendence and a field of points at  different temper- 
atures exists. This result is rather strange and needs 
further experimental check and discussion. Nev- 
ertheless this is the main feature of the data in Fig- 
ure 5. They allow the interpretation that some de- 
viation from the linear viscoelastic behavior de- 
mands very low values of activation energy. Actually 
it is impossible to estimate the level of the activation 
energy in this case because of the natural scatter of 
experimental data, although the t* values can be 
estimated albeit with a rather large error which is 
minimized by the log scale for time. Perhaps a crit- 
ical value of t* exists even for very low stresses, 
although these t* values must be very high. 

The next point of our discussion is the problem 
of the calculation of creep functions from relaxation 
curves, as shown in Figure 6. As was demonstrated 
above the calculation can be done by the expansion 
of a relaxation curve into a sum of exponents. In 
this case one need not treat the relaxation time val- 
ues (presented in Table IV) as having some definite 
physical meaning but only as empirical parameters, 
especially as the number of functions is determined 
only by the quality (accuracy) of the experimental 
data. 

The correlation of the calculated curves with the 
experimental creep functions is shown in Figure 7. 
One can see that the method of calculation indeed 
gives good results but only in the linear viscoelas- 
ticity range. Moreover the possibility of correctly 
predicting the creep function exists in the time scale 
ten-fold wider than the initial time range of relax- 
ation (stresses in relaxation were measured during 
lo3 s and predictions of the creep curve appeared to 
be valid up to lo4 s )  . This result confirms the reli- 
ability of the exponential expansion of the relaxation 
curve as a predictor of the creep function in the lin- 
ear viscoelasticity range. Meanwhile the problem of 
the limits of linearity and stress-versus-critical time 
curve has a separate meaning and can be solved by 
the way shown in Figure 5. 

The authors would like to thank Dr. L. N. Gurinovich 
and Mrs. V. V. Kalashnik for their participation in the 
experimental part of the work. 

NOMENCLATURE 

Stress-sensitivity factor 
Relaxation modulus 
Equilibrium elastic modulus 
Instantaneous elastic modulus 
Ordinate of the relaxation spectrum 
Creep compliance 
Instantaneous compliance 
Ordinate of the retardation spectrum 
Creep kernel 
Empirical constant 
Relaxation kernel 
Temperature 
Time 
Critical time 
Parameters of Koltunov kernel 
Parameters of the kernel corresponding 

to Kolhrausch function 
Stress 
Preset normal stress in creep 
Strain 
Preset strain in relaxation 
Viscosity 
Time 
Characteristic relaxation time 
Relaxation function 
Creep function 
Characteristic retardation time 
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